WE POST ONE NEW BILLION-DOLLAR STARTUP IDEA every day.

Problem: As the world becomes more climate conscious, every industry is moving to become carbon neutral or carbon negative through implementing renewable technologies. But who’s working to help traditional oil and gas to become even more renewable and clean?


Read Our First 500 Billion Dollar Ideas
$5.00
Every month

Subscribe here to get access to the first 500 ideas from our blog. For just one coffee a month, you can have access to more than $500 billion dollars of ideas. What's not to love?


Solution: This business would power the energy of fracking through using renewable energy technologies (solar powered, wind powered, or hydraulic powered fracking).

According to Vox, fracking has “turned the United States into the largest oil producer in the world. It helped pull the country out of a recession. It’s created boomtowns flush with cash in once sparsely populated parts of the country. At the same time, fracking has led to a reduction in greenhouse gas emissions in the US.” Even though it’s in a “dirty” industry (a recent national poll by ClimateNexus found 41 percent of respondents were either somewhat or strongly opposed to using fracking to increase oil and gas supplies, while 42 percent were in favor), there are ways to do fracking better.

Since the Oil & Gas industry is seen as being worth over $2.1 trillion, there is a huge opportunity to transition the old energy world into the new energy world through hybrid solutions.

From a technology perspective, National Geographic recently argued for 5 ways to make fracking greener:

  1. Water-Free Fracking: GasFrac's fracking system, which uses a gelled fluid containing propane, has other advantages besides eliminating the need for water, according to Hill. Because the gel retains sand better than water, it's possible to get the same results with one-eighth the liquid and to pump at a slower rate. Because GasFrac says the amount of hydrocarbon in the gel is comparable to what's in the ground, the fluid can simply merge into the flow being extracted from the ground, eliminating the need to drain contaminated wastewater and haul it away in trucks for disposal, usually at deep-well injection sites. "We present a much smaller footprint," he said. (See related, "Fracking Waste Wells Linked to Ohio Earthquakes.")

  2. Using Recycled Water or Brine: While fracking typically uses freshwater, industry researchers have worked to perfect friction-reducing additives that would allow operators to use recycled "gray" water or brine pumped from underground. Halliburton's UniStim, which went on the market about a year ago, can create a highly viscous fluid from any quality of water, according to Stephen Ingram, the company's technology manager for North America. In northeastern Canada, one producer has tapped into a deep subsurface saline water aquifer for a portion of its supplies for hydraulic fracturing.

  3. Eliminating Diesel Fumes: The diesel-powered equipment used in drilling and pumping wells can be a worrisome source of harmful pollutants such as particulates, as well as carbon emissions that contribute to global warming. And diesel fuel is expensive. Last year, Apache, a Houston-based oil and gas operator, announced it would become the first company to power an entire fracking job with engines using natural gas. In addition to reducing emissions, the company cut its fuel costs by 40 percent. Halliburton has introduced another innovation, the SandCastle vertical storage silo for the sand used in fracking, which is powered by solar panels. The company also has developed natural-gas-powered pump trucks, which Ingram said can reduce diesel consumption on a site by 60 to 70 percent, resulting in "a sizable reduction in both emissions and cost."

  4. Treating Wastewater: At hydraulic fracturing sites, the amount of wastewater typically far exceeds the amount of oil produced. The fluid that returns to the surface through the well bore is not only the chemically treated frack water, but water from the rock formation that can contains brines, metals, and radionuclides. (See related, "Forcing Gas Out of Rock With Water.") That wastewater must be captured and stored on site, and then often is shipped long distances to deep well injection underground storage facilities. There have been few treatment options. But Halliburton has developed the CleanWave treatment system, which uses positively charged ions and bubbles to remove particles from the water at the fracking site. Last September, GE and its partner Memsys also tested a new on-site treatment system that allows the water to be reused without being diluted with freshwater, by employing a desalination process called membrane distillation. (See related Quiz: What You Don't Know About Water and Energy.

  5. Plugging Methane Leaks: A major fracking concern has been whether companies are allowing a significant amount of natural gas to escape, because methane—the main component of natural gas—is a potent greenhouse gas, 34 times stronger than carbon dioxide (CO2). A recent study concluded U.S. methane emissions are likely 50 percent higher than official government estimates. (See related, "Methane Emissions Far Worse Than U.S. Estimates.") New U.S. Environmental Protection Agency regulations that go into effect next year will require that all U.S. oil and gas sites have equipment designed to cut a wide range of pollutants, a step that the agency expects will cut methane. (See related, "Air Pollution From Fracked Wells Will Be Regulated Under New U.S. Rules.")

Monetization: Sales of technology (almost in a consulting model) of fracking technology.

Contributed by: Michael Bervell (Billion Dollar Startup Ideas)

NFTs for Physical Space (unf.)

Venture Capital Capitalization Rates (unf.)